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We consider the propagation of waves of small finite amplitude 8 in a gas whose 
internal energy is characterized by two temperatures T (translational) and 
Ti (internal) in the form e = Cu,T + Cuiq ,  and Ti is governed by a rate equation 
dTJdt = (T- - ) /T .  By means of approximations appropriate for a wave ad- 
vancing into an undisturbed region x > 0, we show that to order €6, the equation 
satisfied by velocity takes the non-linear form 

where a,, a, are the frozen and equilibrium speeds of sound in the undisturbed 
region, 6 = +( 1 - ( a ~ / a ~ ) ) ,  and A is the diffusivity of sound due to viscosity and 
heat conduction ( A  may be neglected except when discussing the fine structure 
of a discontinuity). Some numerical solutions of this model equation are given. 

When E is small compared with 6, it is also possible to construct a solution for 
the flow produced by a piston moving with a constant velocity by means of 
a sequence of matched asymptotic expansions. The limit reached for large times 
for either compressive or expansive pistons is the expected non-linear solution 
of the exact equations. For a certain range of advancing piston speeds, this is 
a fully dispersed wave with velocity U in the range a, < U < a,. If U > a, the 
solution is discontinuous, and indeterminate in the absence of viscosity; a 
singular perturbation technique based on A is then used to determine the structure 
of the wave head. 

1. Introduction 
The linearized theory of wave propagation in a gas with a single relaxing 

internal degree of freedom has been discussed by Chu (1958), Vincenti (1959), 
Clarke (1960,1961), Moore & Gibson (1960) andLick (1967). The thermodynamic 
model used by all these authors is one in which the internal energy per unit mass 
is characterized by the translational temperature T = p/pR and an internal 
temperature (which might, for instance, be a measure of the energy in the 
molecular vibrational states if their excitation were the physical process under 
discussion), by means of the equation 

e = C,,T+C,,T,, (1.1) 
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where the specific heats Cvj, Cvi of frozen andrelaxing modes are supposed constant 
in the temperature range under consideration, and the approach of Ti to its 
equilibrium value T is described by a rate equation 

d q  T-T,  
at 7 
_ -  -- 

7 here is the relaxation time, treated as a constant by the above authors, although, 
as noted in $3, their (and our) analysis remains valid if 7 is, more realistically, 
regarded as a function of p and p, provided the derivatives ar/ap, ar/ap are not 
too large. For adiabatic flow, for which the energy equation is 

- + p d  de (i) = 0, 
at at p 

elimination of e,  T, leads to the equation 

in which p ,  p are pressure and density, 

and ar = (Y fP/P)4  a, = (%P/P)t (1.5) 

are respectively the frozen and equilibrium sound speeds, yr and 7, being 
1 +RC$, 1 + RC&l respectively, where R is the universal gas constant and 
Cv, = CvI.+Cvt is the specific heat for a process for which thermodynamic equi- 
librium prevails throughout. It will be noted that af is always greater than a,. 

When the acoustic approximations appropriate to one-dimensional flow, 
namely aplax = -pau/at, +/at = -paulax, 

at = constant = a,, a, = constant = a,, 

are introduced in (1.4)) and second-order terms excluded, the equation takes the 
linear form 

studied by the above-mentioned authors. This belongs to a general class of 
equations studied by Whitham (1959)) and the character of the solution is well 
understood. A t  times small compared with T* ,  the highest order terms govern the 
propagation of disturbances, which therefore travel at  the frozen speed a,, but 
at times large compared with T* it is the equilibrium speed a, which governs the 
motion. For the case of a piston set impulsively in motion a t  t = 0 in a semi- 
infinite column of gas x > 0, the two limiting solutions are 

t/7* < 1: u = u 0 e-ax/alT* for x < a,t; 1 
(1.7) 
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where uo is the piston speed, and 

which is assumed to be a small quantity. (For vibrational relaxation of a diatomic 
gas 6 = &.) 

Thus linearized theory predicts that the head of the disturbance at large times 
will be diffusive in character, centred on the equilibrium characteristic x = a,t, 
and occupying a region whose width grows parabolically with time or with 
distance from the origin. This is not, however, the asymptotic behaviour that 
would be expected physically for either a compressive or an expansive wave. For 
the former, Lighthill (1956) has pointed out that the full non-linear equations 
possess a solution in which the velocity rises from zero to a small finite value 
(that of a compressive piston) through a wave form that can propagate without 
change of shape, and is continuous provided its velocity (which depends on that 
of the piston) lies between a, and a,. And for an expansive piston, an asymptotic 
examination of the full equations of motion leads one to the centred expansion 
fan appropriate to the equilibrium sound speed a, aa t + 03. Both these asymp- 
totic results require the retention of convective terms in the equation of motion, 
and the present work is aimed a t  finding an improved approximation to the 
equations which will retain the essential non-linearity of the problem and still 
permit analytic treatment, in order to study the evolution of the wave form from 
that of linear theory to its asymptotic state. 

The method we adopt is analogous to that used by Lighthill (1956, p. 250) 
to treat the influence of viscosity and heat conduction in finite disturbances 
propagating into undisturbed gas. Essentially, we exploit the fact that for such 
aunidirectional disturbance the operator a/at + a a/ax, where a is either of the sound 
speeds a,, a,, is small compared with the separate operators a/at, a/ax.  This is 
true provided both 6 and the amplitude of the velocity disturbance, denoted 
non-dimensionally by e = u,/a,, are small compared with unity. The resulting 
equation can be written as 

r * -  at " [ " (  -+ at 
a , + e u  2 )3  - + {Z -+ ( a,+- "2"u);)=o.  (1.9) 

An equation of this form might well have provided a plausible physical model 
even if it had not been capable of analytical derivation. It is exact in the two 
limiting cases r = 0, r = 03, corresponding to non-relaxing flow in frozen and 
equilibrium conditions respectively (because for flow into an undisturbed region 
u,+(u+a)u,= 0, anda=a ,+*(y- l )u) ;  andtheform 

a 
r*- Ltu+Leu = 0, at (1.10) 

where L,, Le denote frozen and equilibrium operators, is that which might have 
been expected by analogy with the linear result (1.6). 

Two limiting forms of (1.9) may be noted here: 
(i) On omission of the non-linear terms it reduces to the telegraph equation 

(1.11) 
a 
at r*-(ut+a,u,)+ut+a,u, = 0, 
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the connexion of which with relaxing gas motion was first noted by Moore & 
Gibson (1960).  The asymptotic forms of the solution for t / r *  9 1 and < 1 are 
identical with those of the full linear equation already quoted (1 .7) ,  so (1.11) is 
not adequate to discuss the development of the flow at very large times even 
when the velocity is extremely small. 

(ii) Very close to equilibrium, i.e. for t / r *  B 1, we expect the flow to be given 
to a first approximation by equating the curly bracket on the left of (1 .9 )  to zero. 

To improve this approximation, we use it to evaluate the square bracket, 
which then becomes simply 7*[a/at(a, - a,) 8u/as],  and since a/at + - a,a/ax, this 
is - a;&* a2u/ax2, so the equation becomes 

(1.12) 

in this region. This is Burgers’ equation, which is satisfied, as Lighthill (1956) and 
Lagerstrom, Cole & Trilling (1 949) have shown, by small motions of a viscous 
heat-conducting gas, in which case a;&-* is replaced by the ‘diffusivity of sound’, 
h say, This confirms the fact that sufficiently close to equilibrium the effect of 
relaxation can be represented by a bulk viscosity, as had been assumed by 
Jones (1964) in discussing the structure of a rarefaction wave at large times. [It 
is of course well known for sound waves (cf. Landau & Lifschitz 1959, pp. 3 0 4 9 )  
and the expression (1 .7 )  is just that obtainable from viscous acoustic theory.] 

In  $ 2 ,  we outline the limiting solutions for large time of the exact equations, 
which for this purpose are (1 -4) together with the equations of momentum and 
continuity. Then, in $ 3, we derive the model equation (1.9) as an approximation 
to the exact equations, and note that the limiting forms of its solution correspond 
to the exact limits of $ 2 .  

In $ 4 ,  we use the model equation to treat the motion produced in a semi- 
infinite column of gas initially at  rest when a piston is set in motion at  one end. 
The complete solution is found by matched asymptotic expansion techniques 
and it is shown that the expected limiting forms are indeed attained at  large times. 

Section 5 contains a discussion of weak discontinuities in a relaxing gas. The 
shock relations are derived by finding a continuous solution of a model equation 
similar to (1.9) but including viscous terms and then letting the viscosity tend 
to zero. Using these shock relations, the solution to the impulsive piston problem 
can be found. 

2. Equations of motion of one-dimensional relaxing gas flow 

equations 
To discuss the flow we must add to (1.4) the continuity and momentum 

(2 .1 )  
dP -+puz = 0, 
at 
au 
at 

p-+ps = 0. 

Substitution of (2 .1 )  puts (1 .4 )  into the form 
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and these three provide a convenient form for the governing equations. We wish 
to discuss wave propagation into a semi-infinite region x > 0 of gas initially at 
rest at pressure po  and density pot and shall denote the undisturbed speeds of 
sound by a,, a, where 

a2 - Y d h ,  at - YePo 
1 -  - 

Po Po 
We note first the asymptotic solution as t -t co for the motion produced by a 
piston moving at constant velocity c. 

(i) Compressive piston, c > 0 

In  this case, provided the piston speed is not greater than 

the asymptotic wave form is the continuous 'fully dispersed shock' described 
by Broer (1951) and Lighthill (1956), propagating at a speed U intermediate 
between a, and a,, the speed U being related to a, and c by the usual Rankine- 
Hugoniot relationship appropriate to thermodynamic equilibrium. If, however, 
c exceeds the stated value, the velocity jumps discontinuously at  the wave head, 
which is followed by a region of continuous velocity variation produced by 
relaxation. The form of the wave is found by writing p ,  p and u as functions of the 
single independent variable 

the boundary conditions being u = 0, c at E = & 00, with duldg = 0 at both 
limits, and p = po,  p = po at 

Equations (2.1) and (2.2) can then beintegrated to theusual conservation forms 

E = x- Ut, (2.5) 

= CO. 

P(U-U) = POU, (2.6) 

P =Po+PoUU. (2-7) 

If we make the further change of variable 

(2.3) becomes, on substitution for p ,  p from (2.6), (2.7) and integration 

where the condition duldz = 0 at u = 0 has been applied. Since du/dz also vanishes 
at u = c,  we must have 

L(u-$) = c,  i.e. u = ;I) c+ao [ l + ( = p ) 2 ] b ,  (2.10) 
Ye+ 1 

which, as stated, is just the equilibrium Rankine-Hugoniot relation between 
U and c .  Provided U < a,, a second integration is possible and gives the shock 
profile 

(2.11) 

where A = a 2 , - U 2 + ( y , + l ) c U ,  B=a2, -U2.  
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If U > a,, the profile given by this expression turns back on itself as shown in 
figure 1, and there is a discontinuous jump in velocity from the value u = 0 to  
a point on the upper half of the profile. This takes place at  a constant value of q, 
namely the upstream value To. (If viscosity and heat conduction are taken into 
account, the jump is replaced by a continuous but rapid change in velocity on 
a length scale of order A/a, where h is the diffusivity of sound.) In  terms of E ,  the 
profile shape is 

"t 

! 

(i) U<a, X 

" E  

(iii) U>a, X 

FIGURE 1. Steady state solutions of equation (2.11). 

It will be noted that the limiting form of either expression, as c/a, + 0, is 

(2.13) 

This is identical with the profile for a Taylor shock in a fluid of diffusivity a;r*S. 

(ii) Expansive piston, c < 0 

To discuss this motion, which has been treated numerically by Wood & Parker 
(1958) and Appleton (1960), we change to independent variables 

'I = x/t, 5 = t (2.14) 



Non-linear wave propagation 335 

and look for a solution in which the pressure, density and velocity p ,  p, zc in 
(2.1)-( 2.3) are written as expansions 

(A similar expansion was proposed by Napolitano (1962) for the corresponding 
two-dimensional steady problem.) The lowest order terms (those in l / C )  give 
the equations 

(U-q)dp+pdU = 0, P ( u - ~ ) d U + d ~  = 0, (U-v)dp+yepdU = 0, (2.16) 

which are readily integrated to show p/po = (p/pO)Ye, whence the structure of 
the expansion fan is found as 

(2.17) 

which is just that of a centred expansion fan in a gas with the equilibrium 
value of y. The equations (2.16) are in fact those that would be found exactly if 
(2.3) had been taken in the equilibrium form dp/dt + y e p z  = 0 at the outset. 

3. Derivation of an approximate equation for weak waves travelling 
in the positive direction 

We wish to discuss motions in which the wave produced by a piston is ad- 
vancing into gas at  rest at pressurep,, for the case in which the scale E say of the 
non-dimensional piston velocity u,/al is at  most of the same order as the lagging 
energy parameter S already defined by (1.8). The dimensionless perturbations 
u/al, (p -po)/po and (p - p,)/p, in flow variables will then be of this order, and the 
results of the linearized theory summarized in 3 1 lead us to expect that these 
perturbations will be slowly varying functions of X-at ,  where a is a (varying) 
sound speed intermediate between the frozen and equilibrium values a, and a,. 
If the major dependence on x, t of the stated flow perturbations is of this form, 
it follows that the operator a/at+a,a/ax, when applied to them, is to a first 
approximation the same as (al - a)  a/ax. This is of order S/T provided the relaxa- 
tion time 7 is the appropriate time-scale for the motion: a piston with finite ac- 
celeration might introduce a further time scale as well, but for the present we shall 
mainly concern ourselves with pistons impulsively set into motion with constant 
velocity. 

Using the above approximation, we now proceed to reduce (2.1), (2.2) and (2.3) 
to a single equation for u. The problem contains two independent small para- 
meters E and S but since the steady fully dispersed shock is possible only if 
E < 46/(y,+ 1) we shall only consider the case E S 6 < 1. We introduce non- 
dimensional scaled variables and derive the approximate equation on the assump- 



336 H .  Ockendon and D. A .  #pence 

tion that the operator (a/at+a,a/i?x) is O(S/r) and then neglect terms in 8, $6 
(but retain all powers of 8). We first define non-dimensional variables as follows: 

u = aleu', 

P =POP +E?/rP'), 

P = PO(1 ++P'), 

x = alrhx', 

t = T*t'. 

Equations (2.1)) (2.2) and (2.3) are then: 

If we write the equations in terms of the independent variables Y = x' - t' and - 

T' = t' we see that a 

= L(L )  . 
7* aT' p 

Assuming that this operator is of O(S/T)  is equivalent to stretching T' by putting 
T' = T/6 and then taking the operator a/aT to be of O(1). In  the following 
work the variables used will be non-dimensional unless stated otherwise and so, 
dropping dashes and writing equations (3.1), (3.2) and (3.3) in terms of Y and T, 
we obtain 

(3.4) 

The first-order approximation to these equations leads to 

p = = U.+O(+,S), u+o(+yS),) (3.7) 
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sincep,p,uall+Oas Y++co.Wewriteu= a$/aYandusing(3.7)in(3.5) and 
(3.6) and eliminating p and p we obtain the equation 

Rewritten in terms of x and t this is 

where u = a$/ax and this is the approximate equation whose solution we now 
consider. In  particular, when 62 B 5 6, we may neglect terms of O(S2) in (3.8) 
and the equation becomes 

""€u)??) = a -  au 
(1-;) (g+(l+T ax ' (3.10) 

which is the non-dimensional form of (1.9). For simplicity, this is the equation 
which we consider in $4,  but a similar analysis can be applied to the more 
general equation (3.9). 

It may be noted that the relaxation time 7 need not be regarded as a strict 
constant. If we adopt the physically more realistic form 

7 = 7(P, P )  

and suppose that the partial derivatives of 7 with respect to p and p are not 
unduly large, then for variations of the magnitude contemplated in p and p 
we should have 

i.e. 

and the term of order E: may be neglected in the above approximation. 

steady solution of the model equation 

Equation (3.10) possesses a self-preserving solution equivalent to that given in $ 2 
for the exact equations. As before, we introduce the single dimensional variable 
c = x- Ut (2.5), and apply the boundary conditions u( + co) = 0, u( -00) = c 
and du/df;( f co) = 0. Then the dimensional form of (3.10) is 

which integrates to give 

(3.11) 
27 

and [+ constant = - [A,ln (c - u) - B1 In u]. 

Fluid Mech. 39 
( Y e  + 1) c 

22 
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where A ,  and B, differ from the corresponding coefficients in (2.1 1) by O ( d ,  62). 
Thus the steady dispersed shock solution is included as a solution of the model 
equation within the limits of relevant approximation. 

As was the case with the exact equation, the profile given by (3.11) turns 
back on itself if U > a,, and the solution for which u +- 0 as 6 -+ + co contains 
a discontinuous jump as shown in the bottom curve of figure 1. From the model 
equation alone it is not possible to locate the jump (as it was not from the full 
inviscid equations in 9 2). Its position is to be found by considering the effects of 
viscosity and heat conduction, which predominate in a region where u changes 
so rapidly as to be discontinuous when they are ignored. This is done in 3 5. The 
equivalent result, for the full equations, is that a Rankine-Hugoniot jump takes 
place at constant composition. 

4. Solution of the model equation 
We consider the specific problem of a piston pushed gradually into a semi- 

infinite tube containing gas in equilibrium. The piston is pushed in steadily so 
that its velocity tends to a uniform velocity c = ale as t + co and we expect the 
steady state wave form (2.12) to be approached as t +- co. The equation (3.10) 
derived in the last section is valid provided both e2 and S2 are negligible and for 
simplicity we consider this case [although the more general equation (3.9) can be 
solved similarly]. 

The non-dimensional boundary conditions are taken as 

(i) u = F’(t) on x = eF(t), (4.1) 

(ii) u = o  on x = t ,  (4-2) 
where F‘(t) -+ 1 as t -+ 00, F increases monotonically and is such that no shocks 
form in the interior of the gas. The condition necessary for no shocks to form on 
the leading characteristic can be found by a method described by Jeffrey & 
Taniuti (1964) and is 

which we assume to hold. 
F”(0) < 6/€, 

The condition which allows a fully dispersed shock wave of form (2.12) to 
exist as t + co is 

G = ale < 46a1/(y,+ I), 

and so we consider piston velocities in the range 

where the lower limit is required for (3.10) to be valid. 
The problem can be solved by the method of matched asymptotic expansions.t 

The solution depends on the size of t  and we find the appropriate solutions for 
different times by stretching the independent variables. 

(i) For t = 0(1) ,  the flow is essentially frozen. The first approximation in 

62 < E < 46/(ye+ l), (4.3) 

E ,  6 to (3.10) is 

i The method used is similar to that applied to the solution of a weak viscous shock 
by Moran & Shen (1966). 
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u = F ’ ( t - x ) ,  (4-4) 

with u = 0 on x = t and u = F’(t) on x = 0. This leads t o  

which is the fust-order frozen solution given by taking 6 = 0 in the exact 
equations. 

(ii) As t increases, we see from (4.4) that u + 1 unless ( t - x )  is O(1). Thus we 
change to co-ordinates y = 8 - 2  and t = tJS to study this next region. Then 
(3.10) is 

If E / B  = O( 1) the equation cannot be simplified and since no solution of this non- 
linear equation is known, no progress can be made. Some numerical solutions of 

U l  

c -- 

X 

FIGURE 2. Numerical solution of equation (3.9) when E N 6. S = 0.1, E = 0.1, t = 100. 
-, numerical solution; - - - -, exact steady solution. 

this equation have been calculated (see figure 2). However, if B < 6, the equation 
can be simplified and solved. We have 

(l+Z) (”) = -&, 8U 

aY at, 

with u = 0 on y = 0 and u = 1 on y = - 00. As t,  3 0, the matching condition with 
(4.4) is u -+ P’(y).  Equation (4.6) is the telegraph equation and essentially the 
same as that solved by Moore & Gibson (1960) for weak disturbances in a relaxing 
gas. 

The solution is 

u = e-g-tiIOg e V ’ ( f ; )  +Wt)) 10(2J[t,(Y - f;)1) a, 

u - Berfc (*j as t l + q  

(4.7) 

where lo is the modified Bessel function of the first kind. This solution is a uni- 
formly valid solution of (3.10) as e --f 0 for all y > 0. 

By dividing the interval of integration and using different asymptotic repre- 
sentations for lo in each interval, we find the asymptotic value of u as t ,  --f co 
which is 

(4.8) 

22-2 
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where z = t, - y = z - (1 - 6) t .  Since a, = a,( 1 - S+ O ( P ) ) ,  we see that the wave 
which started close to  the frozen Mach line is approaching the equilibrium Mach 
line z = (a&,) t as t increases. 

(iii) Solution (4.8) indicates that we should keep z / , / t l  of O(1) as t increases in . .  
the next region .and from equation (3.10) it  can 
scaling is 

and the first approximation to equation (3.10) is 

( $ + u Z )  = g’ 

be seen that the appropriate 

then 

(4.9) 

with u = 0 , l  as z -+ 4 00 and as t,  + 0, u = gerfc (z2 /24t2)  from (4.8). Equation 
(4.9) is Burgers’ equation and can be solved with these boundary conditions. The 
solution is 

As t ,  -+ 00 in (4.10)’ 
1 

1 + &Za-4tz) ’ u = -- 

(4.10) 

(4.11) 

and so a steady-state wave form is obtained. The expression (4.11) is the first 
term in the expansion of the exact solution (2 .12)  and represents a wave travelling 
with velocity 

at 4 -  
Yr+ls) @ = ( l - S +  

The exact velocity of propagation from (2.10) with c = ale is 

= a, (1 - S + T  Y f  + € + O(sS, €2)) 

Thus we can solve the problem completely when S2 < E 4 6 and the solution is 
illustrated in figure 3. We find that all the above solutions of equation (3.10) are 
first-order solutions of the exact equations. Thus the approximations of $ 3  are 
justified throughout the flow field and equation (3.10) is uniformly valid as 
E j O .  

If the piston is slowly withdrawn (3.10) still holds and if Is1 < 1 the solution 
can be found exactly as above. The problem is defined by (4.1) and (4.2) when 
F’(c0) = - 1. The solution is identical with that for p’(00) = 1 until the non-linear 
terms become important in the Burgers’ equation region. The initial condition 
on (4.9) is now u = - gerfc (z2/22/t2) as t ,  + 0. The solution is then 
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The limit as t ,  + co of this expression has been considered by Jones (1964). 
Away from the lines 2, = 0, -t,  we have that as t ,  + 00, 

0 (0 < 221, 

xz/t, ( -t,  < 2, < O ) ,  
- 1 (2, < - t 2 ) .  

Since 

this solution is identical with (2.17) which is the equilibrium expansion fan as 
expected. 

1 

t 6  
7 €2 
-N- 

t 1  
7 6  

t --I 

-N- 

Burgers’ 
equation 

Frozen flow 7 
X 

x - a,t 

FIGURE 4. Comparison of numerical and analytic solution of (3.9) when e < 6. 6 = 0.25, 
8 = 0.075. -, numerical solution; - - -, fist-order solution. 
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It is now possible to consider solutions of the exact equations in the same 
regions and to compare results. Using the same stretched co-ordinates, we find 
that all the above solutions of (3.10) are first-order solutions of the exact equa- 
tions. Thus the approximations of 3 3 are justified throughout the flow field and 
(3.10) is uniformly valid as E --f 0. The solution can easily be extended to the case 
where E 5 a2 and the form of the solution is just the same. Figure 4 compares the 
numerical solution of (3.10) with the above first-order solution when E < 6. 

5. Discontinuities 
In previous sections we have considered the motion of the gas under the 

assumption that no discontinuities form in the flow. We now consider the shock 
relations which are appropriate in such a gas so that, in particular, the flow 
caused by an impulsively started piston may be examined. 

A solution of the hyperbolic system of equations (2.1), (2.2) and (2.3) which 
involves discontinuities cannot be found uniquely without some further informa- 
tion. Lax (1954) has shown that there are an infinite number of ‘permissible’ 
weak solutions of such a system and to pick out the appropriate unique physical 
solution from this infinite set requires an extra physical condition. We suggest 
two ways to resolve this problem. The first is to use the Rankine-Hugoniot 
equations with the additional condition that the energy in the internal mode 
remains constant; or that the shock is ‘frozen’. The second approach is to intro- 
duce viscous terms into the equations of motion and to find a continuous solution 
of these augmented equati0ns.t This solution is uniquely determined and leads 
to a unique discontinuous solution of the inviscid equations in the limit as the 
viscosity tends to zero. We now treat the problem by this second method and 
obtain shock conditions which can be shown to be identical with those obtained 
on the frozen shock assumption. Since the problem we have in mind is that of 
a weak shock wave caused by an impulsive piston we first derive a uniformly 
valid approximate equation of the viscous equations by a similar method to that 
used in $3. We then h d  a solution of this equation which is continuous across the 
shock. 

The dimensional equations of motion including the ‘ first-order viscous terms ’ 
may be written: 

dp au 
-+p-  = 0,  
at ax 

where p, is the equilibrium value of the viscosity, pcvo is that of the bulk viscosity 
and k, that of the thermal conductivity. These three equations, together with 

t The steady solution of these equations has been described by Broer & Van den 
Bergen (1954). 
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(1.1) and (1.2), can now be treated exactly as in 9 3 to derive an approximate 
equation similar to (3.10). We write 

and assume that p and k are small enough to neglect powers of p, k and also 
terms in Ek, ep, 8k and Sp. Since we require the limit as p, k --f 0 ultimately, this 
is not a restrictive assumption. The non-dimensional equation, derived on the 
additional assumption that e2, €8 and 6" are negligible, which is exactly analogous 
to (3.10) is 

(5.4) 

where 

is the non-dimensional 'diffusivity of sound'. The term involving h will only be 
important inside the shock and so, regarding h as the small parameter, we have 
a singular perturbation problem.? 

We suppose that the shock is given by dx/dt = V ( t )  and change to co-ordinates 
based on the shock: 

Equation (6.4) is then 

To consider the shock region in detail, we stretch the variable by putting 6 = AX 
so that, near the shock, the equation (5.5) is 

I fwepu tu=uo+hu l+  ... and V =  &+hV,+ ..., the fist approximationinhis 

so that (5.7) 

since auo/aX = a2uo/8X2 = 0 at X = co. For simplicity, we assume that the 
gas ahead of the shock is at rest, so that u = 0 at X = 03. The value of u as 
X + - 03 is taken as u, which is the value just behind the shock. Integrating the 
above equation again, we have 

t Although we have neglected e2,62 compared with A, the shock relations we obtain are 
valid for any E,  6 < 1. The term in hu,, can justifiably be retained when the length scale 
of the motion is O ( h ) ,  which is the case inside a shock. 
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The conditions at  X = --co give 

H .  Ockendon and D.  A .  #pence 

K = l + -  yf + €Us, 
4 

which agrees with the Rankine-Hugoniot value for the shock speed to the first 
order in 8. To determine the correct boundary conditions on an unsteady shock, 
we need to know both u and its normal derivative on the shock boundary. To 
find such a derivative we take the next approximation in (5.6) which gives on 
using (5.7) 

Integrating this equation, we have 

We could now solve this equation for u1 asymptotically as X 3 k co and then 
match the 'inner solution' in X with the 'outer' in E. However, since we only 
need the derivatives au,/aX, a2u,/aX2 to find the appropriate shock condition, 
the following method is shorter. We first take the 'difference' of (5.9) across the 

The matching procedure of Van Dyke (1964) is then used as follows: 

expanded in terms of the outer variables 

ax ax 

(i) The two term inner solution for au/aX = auo/aX + h au,/aX, which may be 

% ( co) + A  8% - ( 5 co) + (exponentially small terms). 

(ii) The two term outer solution for &@X = Aau/al  = Aau,/at( f 0) + O(A2) 

when expanded in terms of the inner variable X .  Matching these two expressions 
we have au, ax(L-00) = 0, 

or 

Similarly, consideration of a2u/aX2, gives a2u,/aX2( f 00) = 0. 
In (5.10)' these boundary conditions together with (5.8) give 

Writing this in (z,t) variables we have 

(5.11) 

as the appropriate boundary condition on the shock. 
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This shock condition enables us to solve the problem of an impulsively started 
piston. The solution is basically the same as that found in 5 4 and is identical with 
that solution for all sufficiently large times. 

6.  Concluding remarks 
The method described in $0 3 and 4 may also be applied when the gas is subject 

to other dissipative effects. In  particular, the effects of viscosity and heat con- 
duction may be considered and then an analogous argument to that used in § 3 
leads to Burgers' equation. The method has also been applied to a radiating gas 
when y-  1 is small. 

Mention should also be made of an analogy between the discontinuous shock 
structure due to relaxation when U > a, and the similar situation for shocks above 
a certain critical strength in a gas of zero Prandtl number, discussed inter alia 
by Hayes (1958, pp. 448-66). In  this case too, we find that the fine structure of 
the discontinuity for a small but non-zero Prandtl number (T can be explored by 
a singular perturbation technique similar to that of the last section, the co- 
ordinates in the shock front being stretched with length scale g. 

This paper was delivered at  the 12th International Congress of Applied 
Mechanics, Stanford, August 1968. 
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